Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
biorxiv; 2022.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2022.08.06.503050

ABSTRACT

The alveolar type II (ATII) pneumocyte has been called the defender of the alveolus because, amongst the cell's many important roles, repair of lung injury is particularly critical. We investigated the extent to which SARS-CoV-2 infection incapacitates the ATII reparative response in fatal COVID-19 pneumonia, and describe massive infection and destruction of ATI and ATII cells. We show that both type I interferon-negative infected ATII and type I-interferon-positive uninfected ATII cells succumb to TNF-induced necroptosis, BTK-induced pyroptosis and a new PANoptotic hybrid form of inflammatory cell death that combines apoptosis, necroptosis and pyroptosis in the same cell. We locate pathway components of these cell death pathways in a PANoptosomal latticework that mediates emptying and disruption of ATII cells and destruction of cells in blood vessels associated with microthrombi. Early antiviral treatment combined with inhibitors of TNF and BTK could preserve ATII cell populations to restore lung function and reduce hyperinflammation from necroptosis, pyroptosis and panoptosis.


Subject(s)
Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases , Pneumonia , COVID-19
2.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1217324.v1

ABSTRACT

This first of its kind study provides objective context to the potential mechanism of action of corticosteroid use in COVID-19 patients from 3 separate European medical centers by connecting inflammatory biomarkers to IgG levels for the SARS-CoV-2 spike protein antigens and neutralization of ACE2 binding within infected individuals. CXCL9 is described herein as an important COVID-19 biomarker connecting disease severity with inflammatory biomarker and serology response profiles in corticosteroid-treated patients.


Subject(s)
COVID-19
3.
ssrn; 2020.
Preprint in English | PREPRINT-SSRN | ID: ppzbmed-10.2139.ssrn.3572890

ABSTRACT

Importance: The analysis of lung tissues of patients with COVID-19 may help understand pathogenesis and clinical outcomes in this life-threatening respiratory illness.Objective: To determine the histological patterns in lung tissue of patients with severe COVID-19.Design and Participants: Lungs tissues of 38 cases who died for COVID-19 in two hospital of Northern Italy were systematically analysed. Hematoxylin-eosin staining, immunohistochemistry for the inflammatory infiltrate and cellular components, electron microscopy were performed.Results: The features of the exudative and proliferative phases of Diffuse Alveolar Disease (DAD) were found: capillary congestion, necrosis of pneumocytes, hyaline membrane, interstitial oedema, pneumocyte hyperplasia and reactive atypia, platelet-fibrin thrombi. The inflammatory infiltrate was composed by macrophages in alveolar lumens and lymphocytes mainly in the interstitium. Electron microscopy revealed viral particles within cytoplasmic vacuoles of pneumocytes.Conclusions and Relevance: The predominant pattern of lung lesions in COVID-19 patients is DAD, as described for the other two coronavirus that infect humans, SARS-CoV and MERS-CoV. Hyaline membrane formation and pneumocyte atypical hyperplasia are frequently found. The main relevant finding is the presence of platelet-fibrin thrombi in small arterial vessels; this important observation fits into the clinical context of coagulopathy which dominates in these patients and which is one of the main targets of therapy.Funding Statement: No FundingDeclaration of Interests: No Conflict of InterestEthics Approval Statement: Tissue samples were taken as part of routine autopsies


Subject(s)
Disseminated Intravascular Coagulation , Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases , Hyperplasia , COVID-19
4.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.04.19.20054262

ABSTRACT

Importance. The analysis of lung tissues of patients with COVID-19 may help understand pathogenesis and clinical outcomes in this life-threatening respiratory illness. Objective. To determine the histological patterns in lung tissue of patients with severe COVID-19. Design and participants. Lungs tissues of 38 cases who died for COVID-19 in two hospital of Northern Italy were systematically analysed. Hematoxylin-eosin staining, immunohistochemistry for the inflammatory infiltrate and cellular components, electron microscopy were performed. Results. The features of the exudative and proliferative phases of Diffuse Alveolar Disease (DAD) were found: capillary congestion, necrosis of pneumocytes, hyaline membrane, interstitial oedema, pneumocyte hyperplasia and reactive atypia, platelet-fibrin thrombi. The inflammatory infiltrate was composed by macrophages in alveolar lumens and lymphocytes mainly in the interstitium. Electron microscopy revealed viral particles within cytoplasmic vacuoles of pneumocytes. Conclusions and relevance. The predominant pattern of lung lesions in COVID-19 patients is DAD, as described for the other two coronavirus that infect humans, SARS-CoV and MERS-CoV. Hyaline membrane formation and pneumocyte atypical hyperplasia are frequently found. The main relevant finding is the presence of platelet-fibrin thrombi in small arterial vessels; this important observation fits into the clinical context of coagulopathy which dominates in these patients and which is one of the main targets of therapy.


Subject(s)
Necrosis , Adenocarcinoma, Bronchiolo-Alveolar , Lung Diseases , Blood Coagulation Disorders , Severe Acute Respiratory Syndrome , Hyperplasia , COVID-19 , Respiratory Insufficiency , Edema
5.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-23195.v1

ABSTRACT

Baricitinib, is an oral Janus kinase (JAK)1/JAK2 inhibitor approved for the treatment of rheumatoid arthritis (RA) that was independently hypothesized, using artificial intelligence (AI)-algorithms, to be useful for the treatment of COVID-19 infection via a proposed anti-cytokine effects and as an inhibitor of host cell viral propagation1,2. We validated the AI-predicted biochemical inhibitory effects of baricitinib on human numb-associated kinase (hNAK) members measuring nanomolar affinities for AAK1, BIKE, and GAK. Inhibition of NAKs led to reduced viral infectivity with baricitinib using human primary liver spheroids, which express hAAK1 and hGAK. We evaluated the in vitro pharmacology of baricitinib across relevant leukocyte subpopulations coupled to its in vivo pharmacokinetics and showed it inhibited signaling of cytokines implicated in COVID-19 infection. In a case series of patients with bilateral COVID-19 pneumonia, baricitinib treatment was associated with clinical and radiologic recovery, a rapid decline in SARS-CoV-2 viral load, inflammatory markers, and IL-6 levels. This represents an important example of an AI-predicted treatment showing scientific and clinical promise during a global health crisis. Collectively, these data support further evaluation of the AI-derived hypothesis on anti-cytokine and anti-viral activity and supports its assessment in randomized trials in hospitalized COVID-19 patients.


Subject(s)
Pneumonia , Arthritis, Rheumatoid , COVID-19
SELECTION OF CITATIONS
SEARCH DETAIL